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Detecting zero-line mode in bilayer graphene via the quantum Hall effect
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The zero-line mode can be produced in AB-stacking bilayer graphene under a spatially varying electric field.
We investigate the transport properties of the zero-line mode in a six-terminal Hall bar system in the presence
of a uniform magnetic field. We find that the Hall resistance is zero and the longitudinal resistance exhibits a
plateau with 1/2(h/2e2), when the Fermi level lies between the lowest conduction and highest valence Landau
levels, which corresponds to the zero-line modes. Since the zero-line mode propagates along the domain wall
separating opposite valley-Hall topologies, we also numerically measure the currents between source and drain
and the conductance between two of the transversal terminals. Our finding shows that the current between source
and drain is due to the existence of kink state, which can serve as a scheme to detect the zero-line mode. We
further show that the zero-line mode under strong magnetic field is robust against disorders.
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I. INTRODUCTION

After the discovery of graphene,1–3 the study of graphene-
based systems becomes one of the most interesting and active
topics in material physics.4–6 Since an externally tunable
band gap can be easily engineered in AB stacked bilayer
graphene through applying a vertical electric field,7,8 bilayer
graphene provides a better platform to fabricate graphene-
based electronics.9,10 Whenever the applied electric field
changes its sign spatially in bilayer graphene, a chirally
propagating zero-line mode can be produced to localize along
the paths determined by opposite valley-Hall topologies,11,12

which corresponds to “kink states” in the band spectrum.
Based on the creation of a zero-line mode by an asymmetric
potential profile, Martin et al.11 have discussed its relevance
to valleytronics13 by utilizing the valley degrees of freedom.
The zero-line mode is also found to exhibit a zero bend
resistance and is robust against weak disorders due to the
wide spread of wave functions.12,14 Such a one-dimensional
conducting mode has also been reported in other systems.15–25

Killi et al.15 demonstrated that the periodic supercell can result
in zero-energy anisotropic massless Dirac fermions and finite
energy Dirac points with tunable velocities. Moreover, how
the zero-line mode is influenced by a magnetic field has been
studied, and the results can serve as a possible route to fabricate
a switchable one-way valley filter.16 The tunable Luttinger
liquid26 has been proposed in the localized chiral zero-line
state. The zero-line mode at topological intersections is shown
to obey a counterintuitive current partition law.27 However, so
far, no experimental report has demonstrated the existence of
the zero-line mode in bilayer graphene.

In this work, we investigate the transport properties of a
six-terminal bilayer graphene Hall bar system, where a vertical
electric field is applied and the electric field is assumed to
have the same strength but opposite signs in the upper and
lower parts of the device [see Fig. 1]. The zero-line mode
arises under such an electric field distribution.11 In our studied

system, the horizontal direction (including 1 and 4 terminals)
displays zigzag-terminated boundaries, while the transversal
terminals 2, 3, 5, and 6 have armchair-terminated boundaries.
Here, we want to point out that the zero-line mode is different
with the zero-energy states localized at the edges in zigzag
graphene ribbons and triangular dots, the latter originates from
the breaking of the sublattice symmetry between the two types
of atoms in the unit cell of the graphene honeycomb lattice.
The zero-line mode is independent of zigzag interfaces, which
can be produced in any kind of interfaces of bilayer graphene
ribbons.12,14 By further considering a strong magnetic field,
we show that the existence of the zero-line mode can be
readily observed through measuring the Hall and longitudinal
resistances.

II. MODEL AND METHOD

In the tight-binding representation, the π -orbital Hamilto-
nian of a gated bilayer graphene in the presence of strong
magnetic field can be written as

H =
∑

i∈T

(+U + εi)c
†
i ci +

∑

i∈B

(−U + εi)c
†
i ci

+
∑

〈i,j∈T (B)〉
teiφij c

†
i cj

+ t⊥
∑

〈i∈T ,j∈B〉
(c†i cj + H.c.), (1)

where t = 2.8 eV is the nearest-neighbor hopping energy—it
is chosen as the unit of energy in the following. c

†
i (ci)

creates (annihilates) an electron on site i, 2U represents
the interlayer potential difference. εi is the on-site disorder
potential, which is uniformly distributed in the range of
[−W/2,W/2] with disorder strength W. Under the influence
of a perpendicular magnetic field B, the nearest-neighbor hop-
ping term is replaced by a Peierls substitution t → teiφij , where
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FIG. 1. (Color online) Schematic plot of a six-terminal bilayer
graphene Hall bar. Opposite perpendicular electric fields are applied
in the upper and lower regions, where

⊕
and

⊙
denote vertically

downward and upward electric fields, respectively.

φij = ∫ j

i
�A · d�l/φ0 with φ0 = h̄/e is the quantum of flux. Here,

we choose the vector potential in the form of �A = (−By,0,0).
t⊥ couples directly between the A sites at the top layer and the
B sites at the bottom layer. Note that other interlayer hopping
terms are neglected since they have no significant effects on
the Landau levels of bilayer graphene.28–30 We set the distance
between two nearest-neighbor sites as the unit of length in our
calculations.

The current Ip of lead p is determined by the multiterminal
Landauer-Büttiker formula and is given as

Ip = e

h

∑

q(q �=p)

Tpq(Vp − Vq), (2)

where Vi is the potential at lead i, and Tpq is the transmission
coefficient for electrons from lead q to lead p, which can be
calculated from31

Tpq = Tr[�pGr�qG
a], (3)

where �p = i[�r
p − �a

p] is the linewidth function coupling
the semi-infinite lead with the central scattering regime. Gr =
[E − HC − �r

p]−1 is the retarded Green function, where HC

is the Hamiltonian in the central region. �r,a
p is the self-energy

of lead p, which can be calculated numerically.32 The width
of the sample is denoted by N (e.g., in Fig. 1, the system size
is N = 2).

III. NUMERICAL RESULTS

In our following simulations, we choose the system to
be N = 75, which corresponds to a width of 320-Å bilayer
graphene ribbon. The magnetic flux φ in the honeycomb
lattice is fixed at 0.007 and the interlayer hopping energy
t⊥ is set to be 0.3t .28,33 Figure 2 displays the band structure
of the system. Under an interlayer potential difference U , the
zero-energy Landau level exhibits a large splitting around U

in which the layer (valley) degeneracy is lifted.8,28,29 However,
at the energy spectrum shown in Fig. 2, there are eight edge
states (e.g., states labeled as “A”–“H”) when the Fermi level
is located between the lowest conduction and highest valence
Landau levels. The corresponding wave-function distributions
across the transverse direction are plotted in Fig. 3. One can
observe that the states of “A” and “H” (“D” and “E”) are
oppositely localized at the boundaries, and it is known that
these states are boundary dependent and can only propagate
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FIG. 2. (Color online) Band structure of the zero-line mode in
the presence of a strong magnetic field. Here, the interlayer potential
difference is chosen to be U = 0.08t . The sample width is set as
N = 75 and the magnetic flux is φ = 0.007.

along ribbons where valleys are separated and intervalley
scattering is weak.12 From Fig. 3, one can find that there also
exist four states (B, G, C, and F) also named as zero-line
states localized at the center of the system or the line where
the interlayer potential difference changes its sign. Here, we
only present the band structure and wave-function distribution
of edge modes of the zigzag-terminated bilayer graphene
nanoribbon. Actually, the zero-line states in the presence of
magnetic field also arise in the armchair-terminated bilayer
graphene nanoribbon, which are independent of the edge
configurations.

Based on the energy dispersion and the wave-function
distribution, one can reach a clear picture of the zero-line mode
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FIG. 3. (Color online) Wave function distribution of the states
“A”–“H” labeled in Fig. 2. States A, H, D, and E correspond to
the edge modes that can only propagate along boundaries without
intervalley scattering. B, G, C, and F are for the zero-line modes that
emerged from the sign change of the applied electric field.
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FIG. 4. (Color online) Hall resistance R14,26, the longitudinal
resistance R14,23, and the longitudinal conductance as a function of the
Fermi energy EF . Here, the parameters are N = 75 and φ = 0.007.
The unit of the Hall and longitudinal resistances is h/2e2.

in the considered system. When the Fermi energy lies inside the
lowest conduction and highest valence Landau levels, one pair
of the zero-line states transverses along the central region from
left to right. This is intuitively illustrated in Fig. 1. Therefore
the current between terminals 1 and 4 is nonzero. Moreover,
the existence of the zero-line mode can affect the transport
properties of the longitudinal and Hall resistances.

When a small external bias is applied between lead 1 and
lead 4, by requiring the zero charge currents of transverse
terminals 2, 3, 5, and 6 (working as voltage probes), the voltage
Vp (p = 2,3,5,6) can be obtained. Then the longitudinal
resistance R14,23 = (V2 − V3)/I14 and the Hall resistance
R14,26 = (V2 − V6)/I14 can be calculated. In our calculations,
we set the width of transversal terminals to be 123 Å, which
is much larger than the magnetic length. In Fig. 4, we plot the
longitudinal and Hall resistances of the considered system as a
function of the Fermi energy for different interlayer potential
differences, i.e., U/t = 0.00,0.02,0.04,0.08. One can see that
the Hall resistance R14,26 is zero when the Fermi energy
is between the lowest electron and hole Landau levels, and
for the Fermi energies beyond, the Hall resistance exhibits
quantized plateaus with values ±1/2(h/2e2), ±1/3(h/2e2),
etc. The nonzero Hall resistance can be represented by
R14,26 = 1/ν(h/2e2), where ν is the filling factor. In this case,
ν is zero and the Hall resistance R14,26 shows a zero plateau,
which is completely distinct from those in bilayer graphene
with uniformly distributed interlayer potential difference.28 In
addition, one can see that the longitudinal resistance shows a
plateau with 1/2(h/2e2) while the Fermi energy is between the
lowest electron and hole Landau levels. From the analysis of
edge states in Figs. 2 and 3, we know that states labeled A, H,
D, and E can only propagate along sample boundaries, which
give zero contribution to the longitudinal resistance.28 Only
the zero-line modes B, G, C, and F contribute to the quantized
longitudinal resistance. Because the number of counterprop-
agating zero-line mode pairs is 2, the longitudinal resistance
plateau shows the value of 1/2(h/2e2). The quantization and
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FIG. 5. (Color online) The resistance R14,14 and the conductances
G23,23 and G32,32 as a function of Fermi energy EF . The parameters of
N = 70 and φ = 0.007 are used. The unit of the resistance is h/2e2

and the unit of the conductance is 2e2/h.

robustness of the zero-line mode arise from the chirality of the
zero-line mode. For Fermi energies beyond, the longitudinal
resistance shows a zero plateau. Therefore such zero Hall and
half-quantized longitudinal resistances should arise from the
contribution of the zero-line mode.

In the above discussions, we have studied the effect of
the zero-line mode on the longitudinal and Hall resistances.
However, it is still yet enough to probe the existence of the
zero-line state in the considered system. We know that the zero-
line mode propagates along the middle interface, therefore we
measure the current between terminals 1 and 4 to probe it. In
Fig. 5, one can see that the resistance R14,14 shows plateaus of
±1/2(h/2e2), ±1/3(h/2e2), etc., which prove the existence of
current between terminals 1 and 4. One may wonder whether
the current propagates along the sample boundaries. In Fig. 5,
we also present the conductance G23,23 = I23/V23 between
terminals 2 and 3, where the voltage of terminal 2 is set to
be V and that of other terminals is set to be 0. Similarly,
the conductance G32,32 = I32/V32 is also presented. One can
observe that both G23,23 and G32,32 give zero value plateau
when the Fermi energy is between the lowest electron and
hole Landau levels. This indicates that the current does not
propagate along the sample boundaries. Therefore the current
between terminals 1 and 4 comes from the contribution of
the zero-line mode. When the Fermi energy is beyond the
lowest electron and hole Landau levels, G23,23 and G32,32 show
integral quantum conductance plateau values with 1(2e2/h),
2(2e2/h), 3(2e2/h), etc.

Till now, we have presented a scheme of probing the
existence of a kink state by ways of measuring the longitudinal
and Hall resistances. One may also wonder whether the
zero-line mode discussed above is robust against disorders
or whether the considered scheme is feasible in experiment.
To this end, in Fig. 6, we explore the disorder effect on the
longitudinal resistance R14,14. In the numerical calculation, up
to 200 ensembles are collected to for each point. In the absence
of disorder (i.e., W = 0), R14,14 shows quantum conductance
plateaus in units of 1/2(h/2e2) and 1/3(h/2e2). When the
disorder is present, one can notice that only small fluctuations
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FIG. 6. (Color online) The resistance R14,14 as a function of the
Fermi energy EF for different disorder strengths W . Other parameters
used are the same as those in Fig. 5.

are imposed on the plateau 1/2(h/2e2) for W = 1U , 2U , and
4U . Such observations demonstrate that the zero-line mode
is much robust against disorder, which is due to their spatial
wave-function distribution.12 Furthermore, one can see that the
resistance R14,14 contributed by the zero-line states becomes
large when the disorder strength reaches W = 6U or 10U ,
and the quantum plateau with value 1/2(h/2e2) is destroyed.
The reason behind is that the zero-line mode is located in the
central region of the sample, and it is produced within a bulk
gap. Since an extremely large disorder destroys the bulk gap,
the zero-line mode is also destroyed along with the breaking
of the bulk band gap.

Here, we would like to point out that counterpropagating
zero-line modes are encoded with different valleys K and K ′
in the absence of an external magnetic field. Whenever the
disorder is smooth, no backscattering is allowed. Therefore
only the short-range disorder can possibly scatter the zero-
line mode. In the presence of magnetic field, it can form
Landau levels. However, the zero-line mode here still comes

from the opposite electric field, which is not affected by
the presence of a magnetic field. Therefore this zero-line
mode should still be robust against smooth (or long-range)
disorders.

IV. CONCLUSIONS

In summary, in a six-terminal Hall bar setup, we have
investigated the effect of the zero-line mode on the quantum
Hall effect in a bilayer graphene experiencing a spatially
varying interlayer potential difference. Due to the existence
of the zero-line mode in bilayer graphene, the Hall resistance
shows zero value plateaus and the longitudinal resistance
shows a plateau with 1/2(h/2e2) when the Fermi energy lies
between the lowest conduction and highest valence Landau
levels. Moreover, our numerical results demonstrate that the
current between horizontal terminals flows along the middle
interface, which is the characteristic of the zero-line mode
in gated bilayer graphene. Thus our proposed scheme can
be used to probe the existence of the zero-line mode due to the
presence of opposite valley-Hall topologies. Furthermore, we
numerically show that the zero-line mode is very robust against
the short-range Anderson disorder, which is thus feasible in
experiment.
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